Evangelos Latos

Department of Mathematics, University of Mannheim

Published-Submitted

  1. Li Chen, Laurent Desvillettes, and E. Latos, On a class of reaction-diffusion equations with aggregation”, preprint.
  2. K. Fellner, E. Latos and T. Suzuki, “Large-time asymptotics of a public goods game model with diffusion”, arXiv.
  3. K. Fellner, E. Latos, and B.Q. Tang “Global regularity and convergence to equilibrium of reaction-diffusion systems with nonlinear diffusion”, arXiv.
  4. S. Bian, L. Chen, and E. Latos, Chemotaxis model with subcritical exponent in nonlocal reaction, Nonlinear Analysis, vol. 176, (2018), p. 178 - 191. arXiv
  5. S. Bian, L. Chen, and E. Latos, Nonlocal nonlinear reaction preventing blow-up in Keller-Segel system, to appear in Discrete & Continuous Dynamical Systems-A, arXiv.
  6. E. Latos, Y. Morita, and T. Suzuki, “Global dynamics and spectrum comparison of a reaction-diffusion system with mass conservation”, arXiv, to appear in Journal of Dynamics and Differential Equations, https://doi.org/10.1007/s10884-018-9650-6. arXiv
  7. K. Fellner, E. Latos, and B.Q. Tang “Well-posedness and exponential equilibration of a volume-surface reaction-diffusion system with nonlinear boundary coupling”, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 2017, https://doi.org/10.1016/j.anihpc.2017.07.002. arXiv
  8. L. Chen, E. Latos, and J. Li, “Wavefronts for a nonlinear nonlocal bistable reaction-diffusion equation in population dynamics”, Journal of Differential Equations, Vol. 263, 10, p. 6427-6455, 2017. arXiv
  9. S. Bian, L. Chen, and E. Latos, “On the global existence of nonlocal Fisher-KPP type equations”, Nonlinear Analysis, vol. 149, (2017), p. 165–176. arXiv
  10. E. Latos and T. Suzuki, “Chemotaxis with quadratic dissipation and logistic source”, Advances in Mathematical Sciences and Applications, vol. 25, (2016) p. 207-227.
  11. K. Fellner, E. Latos and T. Suzuki, “Global Smooth Solutions for Nonlinear Reaction-Diffusion Systems with Mass Conservation”, Discrete and Continuous Dynamical Systems - Series B, Vol. 21, 10, pp. 3441–3462, December 2016. arXiv
  12. K. Fellner, E. Latos, and G. Pisante, “On the finite time blow-up for filtration problems with nonlinear reaction”, Applied Mathematics Letters, (42), (2015), p47–52. arXiv
  13. E. Latos, T. Suzuki, “Global dynamics of a reaction-diffusion system with mass conservation”, J. Math. Anal. Appl., 411, (2014), p. 107–118.
  14. E. Latos, D. Tzanetis “Existence and blow-up of solutions for a semilinear filtration problem”, Electron. J. Diff. Equ., (2013), No. 178, p. 1-20.
  15. E. Latos, T. Suzuki, and Y. Yamada, “Transient and asymptotic dynamics of a prey-predator system with diffusion”, Math. Meth. Appl. Sci., 35, (2012), p. 1101-1109.
  16. E. Latos, D. Tzanetis, “Grow-up of critical solutions for a non-local porous medium problem with Ohmic heating source”, Nonlinear Differential Equations and Applications NoDEA, (2010), 17: 137.
  17. E. Latos, D. Tzanetis, “Existence and blow-up of solutions for a non-local filtration and porous medium problem”, Proceedings of the Edinburgh Mathematical Society, (2010) 53, p. 195–209.

▪ Mathematical Analysis of Blow-up of Solutions to local & non-local Partial Differential Problems, Ph.D. 2010.
▪ Asymptotic Behavior of the heat equation with critical potential, Postgraduate degree (M.Sc.) in Pure Mathematics.